Discriminative Power of Input Features in a Fuzzy Model

نویسندگان

  • Rosaria Silipo
  • Michael R. Berthold
چکیده

In many modern data analysis scenarios the first and most urgent task consists of reducing the redundancy in high dimensional input spaces. A method is presented that quantifies the discriminative power of the input features in a fuzzy model. A possibilistic information measure of the model is defined on the basis of the available fuzzy rules and the resulting possibilistic information gain, associated with the use of a given input dimension, characterizes the input feature’s discriminative power. Due to the low computational expenses derived from the use of a fuzzy model, the proposed possibilistic information gain generates a simple and efficient algorithm for the reduction of the input dimensionality, even for high dimensional cases. As real-world example, the most informative electrocardiographic measures are detected for an arrhythmia classification problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Input features' impact on fuzzy decision processes

Many real-world applications have very high dimensionality and require very complex decision borders. In this case, the number of fuzzy rules can proliferate, and the easy interpretability of fuzzy models can progressively disappear. An important part of the model interpretation lies on the evaluation of the effectiveness of the input features on the decision process. In this paper, we present ...

متن کامل

Interpreting Fuzzy Models The Discriminative Power of Input Features

An important part of the interpretation of a decision process lies on the ascertainment of the in uence of the input features, that is, of how much the implemented model relies on a given input feature to perform the desired task. Recently data analysis techniques based on fuzzy logic have gained attention because of their interpretability. Many real-world applications, however, have very high ...

متن کامل

T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY

A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...

متن کامل

A Fuzzy Multi Objective Programming Model for Power Generation and Transmission Expansion Planning Problem

The increasing consumption of electricity over time forces different countries to establishnew power plants and transmission lines. There are various crisp single-objective mathematicalmodels in the literature for the long-term power generation and transmission expansion planning tohelp the decision makers to make more reasonable decisions. But, in practice, most of the parametersassociated wit...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999